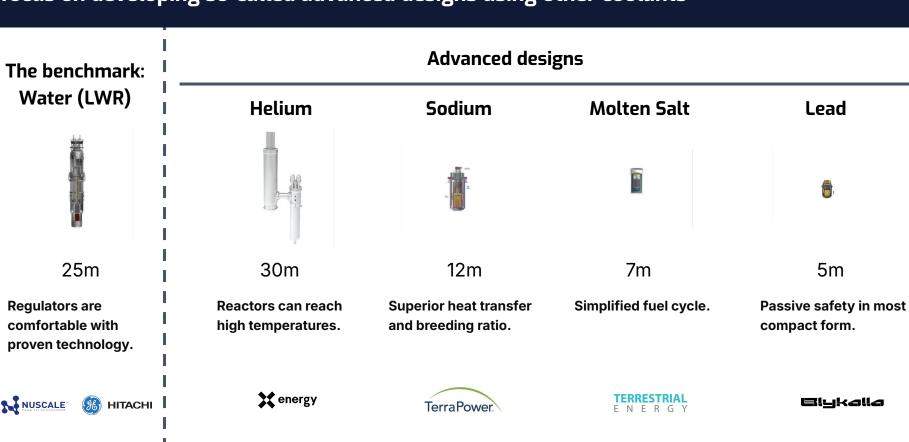

building advanced lead reactor

Introduction

Blykalla is based on 25 years of research and 11 years as a company - developing key patents until commercialization phase started in 2022

Commercialization Research and IP development phase starts 2016 2019 2020 2022 2022 2013 2021 New **Novel manufacturing New Alumina Forming** Patent for lead-cooled AFA steel fulfill all Uranium nitride fuel **Uniper and Norrsken** method for fuel pellets Austenitic (AFA) steel reactor design with requirements for weld powder manufactured corrosion-resistant become shareholders FeCrAl steel developed demonstrated developed, for weld double lid approved, overlay protection of with inhouse method by the CRO of Blykalla 3 min instead of making it possible to the reactor vessel overlays and his group at the build more compact 8 hrs Royal Institute of reactors Technology (KTH) in **New Alumina Forming** Stockholm, Sweden Martensitic (AFM) steel developed, suitable for pump impellers



SEALER-One: Sweden's First Advanced Reactor

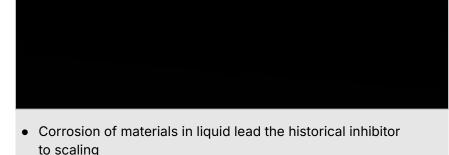
Item	Value	
Power	60 MWt	
Lead coolant mass flow	3170 kg/s	
Lead inventory	800 tons	
Core inlet/outlet temperature	420°C/550°C	
Secondary side inlet/outlet temperature	340°C/530°C	
Fuel	Uranium Nitride (UN)	
Maximum fuel residence time	5000 days	
Peak fuel burn-up	18 GWd/ton	
Peak damage dose	35 dpa	

Traditionally, SMRs are cooled by (light) water, but there is more and more focus on developing so-called advanced designs using other coolants

Four competitive advantages over traditional technology

	SMR: light water-cooled	Advanced SMR: lead-cooled	
Business case (faster & cheaper)	>7 years, >\$100/MWh	<2 years, 40-60% cheaper	
Inherent safety enable localization	Up to 50 km planning zone	100s of meters enabling co-location with industry	
Industrial use cases	250°C steam - power only	530°C stream - H ₂ and biomass heat use cases	
Making nuclear sustainable	New uranium mining and 100k years deposits	Reprocessing fuel, fraction of waste stored for <1k years	

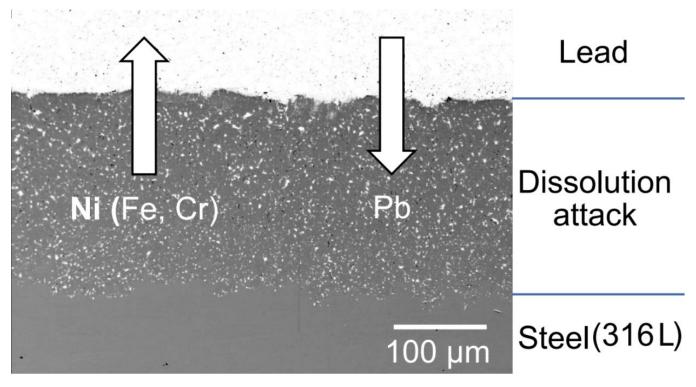
History of Lead Reactors


Lead-cooling is a proven technology, but it has historically been limited by corrosion

Alfa class submarine, 1968

- Lead-cooling with >60 years of history and ~100 reactor years of operational experience
- 11 systems, 9 submarines, 2 on land built by the Soviet, and published data and peer reviewed research on technology
- Developed in European research since 1990s

Regular "stainless steel" (SS316) after being exposed to liquid lead


Work-around solutions tried historically include Silicon oxide,

erosion leads to lead penetrating surface and corroding

but it becomes embrittled, or applying surface treatments, but

History of Lead Reactors

Corrosion has been a main issue for LFR

Stainless steel exposed to liquid lead at 600°C for 1000 hours

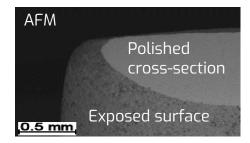
Families of AFS - Background

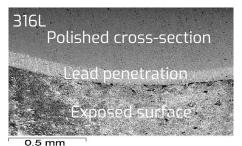
- Ferritic FeCrAl-alloys [Fe-(15-25)Cr-(4-6)Al], was a Swedish invention by Hans von Kantzow, patented 1926.
- Marketed by Kanthal (within the Alleima company) and mainly used in heating elements and wires.
 - Commonly used at high temperatures (900-1300 °C).
- Blykalla has now patented two additional Alumina Forming Steels:
 - Alumina Forming Austenitic (AFA)
 - Alumina Forming Martensitic (AFM)

	FeCrAl	AFA	AFM
Microstructure	Ferritic	Austenitic	Martensitic
IP Owner	Alleima (Kanthal)	Blykalla	Blykalla
Ductility at RT	Brittle (weld)	Ductile	Brittle
Corrosion Protection	Excellent	Good	Excellent
Weld	Difficult	Easy	Not recommended

Novel Materials for Corrosion Protection in Lead

FeCrAl - ferrite

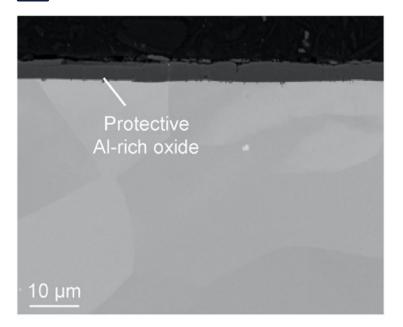

AFA - austenite


Corrosion protection is achieved through use of novel alumina forming materials as overlay welds on codified pressure boundary materials, and as bulk material for other components.

AFM - martensite

No weight loss and no visible erosion corrosion in lead.

Severe erosion corrosion, weight loss and lead penetration

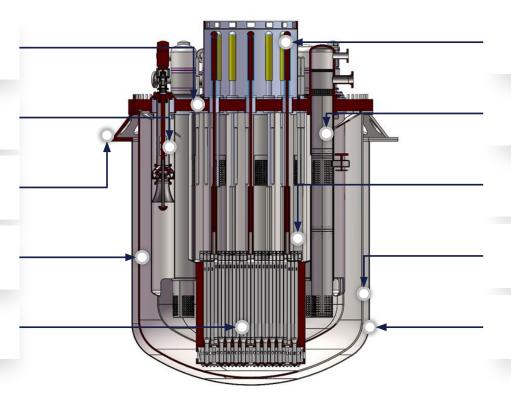


Corrosion protection at the microscopic scale

Fe-10Cr-4Al-RE exposed to lead at 550°C for two years

Fe-10Cr-4Al-RE exposed to lead at 800°C for ten weeks

Preliminary Primary System Layout


Primary vessel lid

Primary coolant pump

Primary vessel support skirt

Vessel internals

Fuel assemblies

Control and shutdown assembly drives

Steam generator

Control and shutdown assemblies

Primary vessel

Guard vessel

The Future of Blykalla

Now building test facility and prototype reactor in Oskarshamn with Uniper

On February 3rd 2025 we had our groundbreaking ceremony with the Deputy Prime Minister of Sweden and industrial partners

Our goal is to build 1 000 SMRs. Together they will produce close to 500 TWh of electricity per year.

If successful, we will avoid 0.5 gigatons of CO_2

= 1% of global emissions, every year

(and build a \$5 bn company¹)

Thank you!