

Guidelines for Engineering and Manufacturing for Vacuum

Marcelo J. Ferreira

Head of ESS Vacuum Section - STS

European Spallation Source ERIC

22/Oct/2019

Outline

- Vacuum Standards for vacuum
- Cleaning components
- Vacuum welding
- Materials for vacuum
- Good practices in the field

Why vacuum standards?

Speaking the same language: Standard for vacuum vocabulary.

Vacuum symbols: no ISO!!!

Vacuum symbols: DIN

ISO

Vacuum systems are build only on vacuum standards?

Are there components for vacuum standardized?

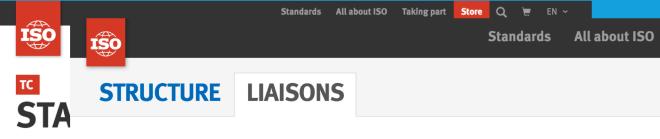
Standards are on dimensions/shape, process and equipments. NOT MATERIAL STANDARDS FOR VACUUM.

No vacuum standards for welding. ONLY FOR LEAK TEST.

https://www.iso.org/committee/51654.html

STANDARDS BY ISO/TC 112 ° **Vacuum technology**

Filter: 🙎 🔗 Published standards 🚨 🛇 Standards under development 🗆 🔗 Withdrawn standards 🗆 🕲 Projects of	deleted	Filter the list
STANDARD AND/OR PROJECT UNDER THE DIRECT RESPONSIBILITY OF ISO/TC 112 SECRETARIAT (33) \$	STAGE	ICS
⊘ ISO 1608-1:1993 Vapour vacuum pumps — Measurement of performance characteristics — Part 1: Measurement of volume rate of flow (pumping speed)	90.93	23.160
⊘ ISO 1608-2:1989 Vapour vacuum pumps — Measurement of performance characteristics — Part 2: Measurement of critical backing pressure Output Description: Desc	90.93	23.160
⊘ ISO 1609:1986 Vacuum technology — Flange dimensions	90.92	23.160
 ○ ISO/FDIS 1609 Vacuum technology — Dimensions of non-knife edge flanges 	50.00	23.160
 ● ISO 2861:2013 Vacuum technology — Dimensions of clamped-type quick-release couplings 	90.92	23.160
○ ISO/FDIS 2861 Vacuum technology — Dimensions of clamped-type quick-release couplings	50.00	23.160
 ● ISO 3529-1:2019 Vacuum technology — Vocabulary — Part 1: General terms 	60.60	23.160 01.040.23
	90.92	23.160 01.040.23


Vacuum systems are build only on vacuum standards?

Are there components for vacuum standardized?

Standards are on dimensions/shape, process and equipments. NOT MATERIAL STANDARDS FOR VACUUM.

No vacuum standards for welding. ONLY FOR LEAK TEST.

https://www.iso.org/committee/51654.html

Vacul LIAISON COMMITTEES TO ISO/TC 112

The committees below can access the documents of ISO/TC 112:

Filter: ☑ ⊙ I	REFERENCE	TITLE
Tittell = 01	ISO/TC 5	Ferrous metal pipes and metallic fittings
STANDARD A	ISO/TC 131/SC 2	Pumps, motors and integral transmissions [STANDBY]
Vapour vacuu rate of flow (p	ISO/TC 135	Non-destructive testing
⊘ ISO 1608 -2		

LIAISON COMMITTEES FROM ISO/TC 112

Vapour vacuu backing press

Vacuum tech

⊙ ISO/FDIS:

ISO/TC 112 can access the documents of the committees below:

Vacuum tech	DEFEDENCE	TITLE
⊘ ISO 2861:	REFERENCE	TITLE
Vacuum tech ○ ISO/FDIS 2	ISO/TC 118	Compressors and pneumatic tools, machines and equipment
Vacuum tech	ISO/TC 131	Fluid power systems
Vacuum tech	ISO/TC 131/SC 2	Pumps, motors and integral transmissions [STANDBY]
	ISO/TC 135	Non-destructive testing

Taking part Store Q

Leak detection or Non-destructive testing.

Convert to: Multiply helium leak rate by factor: q of Hydrogen 2.23

q of Air 1.08

q of Water Vapour 2.09

mbar.l/s	time for one CC to leak		Time for one bubble to leak	
1,0E-01	10	sec	0,25	sec
1,0E-02	100	sec	2,5	sec
1,0E-03	16,7	min	25	sec
1,0E-04	2,8	h	4	min
1,0E-05	1,2	days	42	min
1,0E-06	11,6	days	7	h
1,0E-07	3,9	months	3	days
1,0E-08	3,2	years	1	month
1,0E-09	32,2	years	10	months
1,0E-10	321,5	years	8	years
1,0E-11	3215,0	years	80	years

TC > ISO/TC 135

STANDARDS BY ISO/TC 135/SC 6 °

Standards All about ISO

Leak testing

Filter: ✓ ⊘ Published standards □ ⊙ Standards under development □ ⊘ Withdrawn standards □ ⊗ Projects of	deleted	Filter the list
STANDARD AND/OR PROJECT UNDER THE DIRECT RESPONSIBILITY OF ISO/TC 135/SC 6 SECRETARIAT (4)	STAGE	ICS
⊚ ISO 3530:1979	90.93	23.160
Vacuum technology — Mass-spectrometer-type leak-detector calibration		
⊙ ISO 20484:2017	60.60	19.100
Non-destructive testing — Leak testing — Vocabulary		01.040.19
⊚ ISO 20485:2017	60.60	19.100
Non-destructive testing — Leak testing — Tracer gas method		
⊘ ISO 20486:2017	60.60	19.100
Non-destructive testing — Leak testing — Calibration of reference leaks for gases		

Vacuum flanges types:

 Clamped-type Quick-release coupling, it is known as KF, several types of gaskets.

ISO 2861 only up to DN 50 flange size, under development by TC 112.

No standard for clamps, options by application.

KF CLAMPS Stainless steel clamp **Amagnetic clamp Bolt clamp** crew) **KF CENTERING RINGS Trapped centering ring** Centering **Alur**

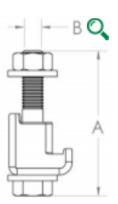
- pres
 - pressure rang
 - temperature i
 - other o-rings
- 304L inner
- Aluminum outer
- seal : Viton (or other seal on request ex : Nitrile, EPDM, ...)
- pressure range: 10⁻⁷ mbar to 10 bar
- temperature range : -10 to 200°C

Vacuum flanges types:

 ISO flanges: bolts and clamps, fixed or rotatebles types usual for sizes

≥ DN63.

ISO 1609 non-knife edge flanges, standard under development.



Double claw - stainless steel

Double claw clamps - aluminum

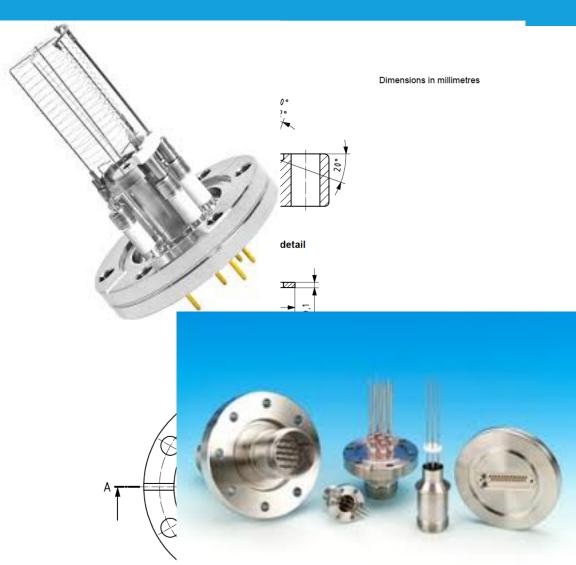
Wall clamps, nut & washer - steel

- used with through bolt holes and centering ring
- also available with aluminum clamps on request

250	261	10	5	2,5	290	275	285
320	318	15	7,5	2,5	370	355	365
400	400	15	7,5	4	450	435	442
500	501	15	7,5	4	550	535	542
630	651	20	10	5	690	660	680

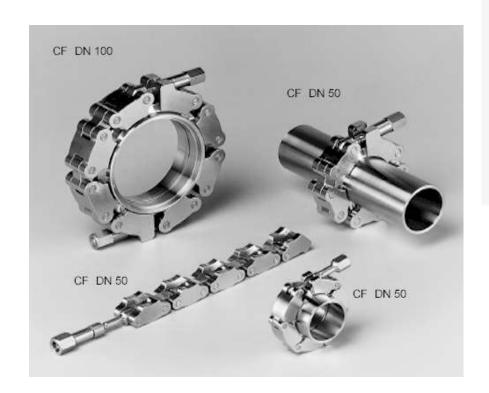
See 3.2. It should be noted that the nominal bores recommended above 630 are: 800, 1 000, 1 250, 1 600, 100 and 2 500.

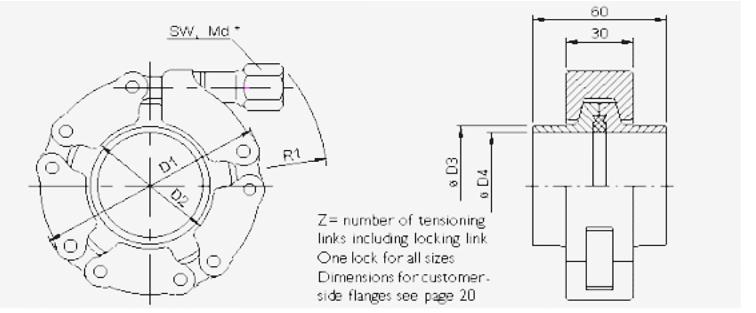
^{**} See 3.5.3


^{***} Can

Vacuum flanges types:

 ConFlat ™ (former Varian Inc.) knife-edge bakable flanges (UHV), it is known as CF.





Vacuum flanges types:

 Not standardized flanges: KF-CF, Cefix or CF quick-release.

Class "0" of vacuum: monolayer

How many molecules we have at the surface of a cube of 1 liter?

A.G. Mathewson

Place one molecule of **nitrogen** by side another, over the cube surface (definition of monolayers).

6 side =
$$0.010 \times 0.010 \times 6 = 0.06 \text{ m}^2$$

$$\frac{1}{3.7 \cdot 10^{-10} \times 3.7 \cdot 10^{-10}} = 7.3 \cdot 10^{18} \text{ molecule/m}^2$$

$$0.06 \times 7.3 \cdot 10^{18} = 4.4 \cdot 10^{17}$$
 molecules

The molecular diameters are measured in Ångström (1 $Å=10^{-10}$ m).

Diameter of **nitrogen** molecule: 3.7 Å

Class "0" of vacuum: pressure equivalent

What is one monolayer of gas as pressure equivalent?

Using the ideal gas law at standard references conditions:

 $2.69 \cdot 10^{22}$ molecules in 1 liter.

$$\frac{\textbf{4.38.10}^{17} \times 101{,}325}{2.69 \cdot 10^{22}} = \frac{\textbf{1.65 Pa (1.65 x 10}^{-2} \text{ mbar) medium vacuum!!}}{2.69 \cdot 10^{22}}$$

Class "0" of vacuum: gas in solid solution

How much gas we have in solid solution on stailess steel (SS) 304?

Typical value (ASTM handbook) for **nitrogen** on austenitic phase is **150 ppm in weight**. SS304 density: 8 . 10³ g/liter

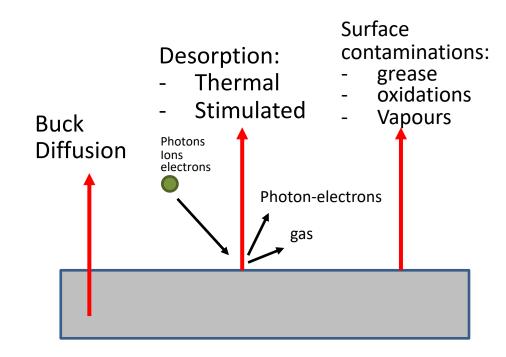
150 ppm =
$$\frac{150}{10^6}$$
 x 8 . 10^3 = **1.20 g/liter**

Using the ideal gas law at standard references conditions:

2.69 · 10^{22} molecules in 1 liter => 4.77 · 10^{-23} x 2.69 · 10^{22} = **1.28** g

≈ 150 ppm of nitrogen in SS304 is equivalent of 1 bar atmosphere!!

1 molecule of **nitrogen** weight = $4.77 \cdot 10^{-23}$ g


Cleaning components

K. Middleman STFC/Daresbury

Contaminant: prevents vacuum system reaching required base pressure or introduces unwanted species into the residual gas.

Outgassing: The outgassing rate is the time-dependent rate at which gases and vapours are released under vacuum. This limits the ultimate pressure achievable and can introduce contamination into the vacuum system

Cleaning methods

	Chemical	Mechanical	Thermal	Surface
	Wash (Solvent or detergent)	Bead blasting (Vacuum bakeout	Polishing
(Water jet	Ultrasonic	Vacuum fire (950 C under vacuum)	Electro-polishing
	Vapour (solvent)	CO ₂ snow	Air bake (up to 400 C)	Plasma etch
(Pickling		Vacuum remelt	Diamond turning
	Plasma cleaning (H ₂ or O ₂)			

Cleaning "recipes"

Cleaning procedures are specific for each applications:

- ESS cleaning procedures are prepared for UHV describe at ESS Vacuum Handbook.

4.2.1 Aluminium alloy

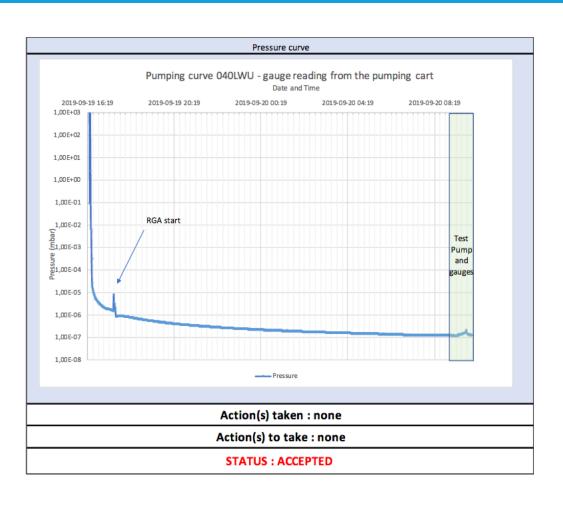
METHODOLOGY:

- Chemical degreasing with detergent and ultrasonic
 - o Formulation and operating parameters:
 - Detergent NGL 17.40 spec. ALU III: 10 g/l.
 - Temperature: 50°C.
 - Time: 30 60 minutes.
 - o Rinsing with water
- Pickling
- o Formulation and operating parameters:
 - Caustic soda: 42 g/l
 - Temperature: 60°C.
 - Time: 10 30 seconds.
- o Rinsing with water
- Neutralization with detergent and ultrasonic
 - o Formulation and operating parameters:
 - Nitric acid: 400 ml/l.
 - Hydrofluoric acid: 8.5 ml/l
 - Temperature: 20°C.
 - Time: 1 5 minutes.
 - o Rinsing with water.
- Rinsing with demineralised water
- Drying with clean compressed air and bake-out at 60°C

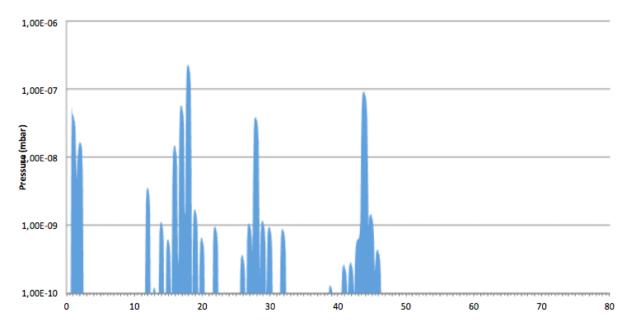
Cleaning "recipes"

Cleaning procedures are specific for each applications:

- ESS cleaning procedures are prepared for UHV describe at ESS Vacuum Handbook.


4.2.2 Stainless steel

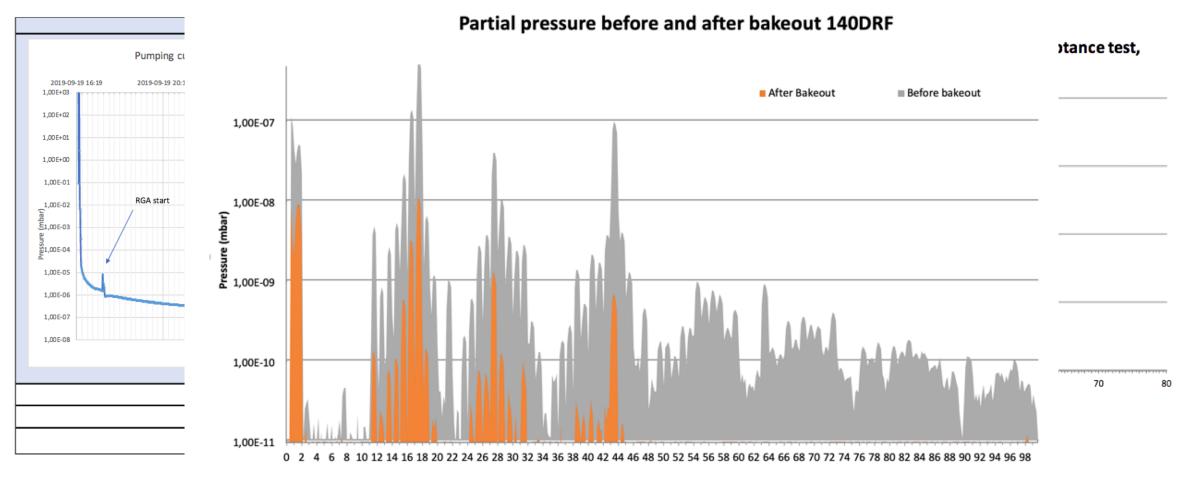
METHODOLOGY:

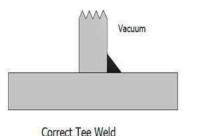

- Chemical degreasing with detergent and ultrasonic
 - o Formulation and operating parameters:
 - Detergent NGL 17.40 spec. ALU III: 10 g/l
 - Temperature: 50 60°C
 - Time: 30 60 minutes
 - o Rinsing with water
- Pickling
- o Formulation and operating parameters:
 - Net inox (pure): HNO3 (~ 50 %) + HF (~ 3 %)
 - Temperature: 20°C
 - Time: 30 90 minutes
- o Rinsing with water
- Neutralization with detergent and ultrasonic
 - o Formulation and operating parameters:
 - Detergent NGL 17.40 spec. ALU III: 10 g/l.
 - Temperature: 50 60°C.
 - Time: 5 10 minutes.
 - o Rinsing with water.
- Rinsing with demineralised water and alcohol
- Drying with clean compressed air and bake-out at 60°C

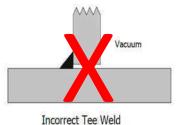
Cleaning results

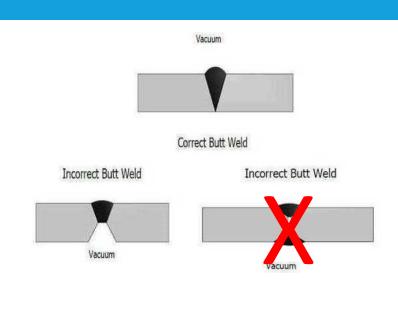
Partial pressure of the 040LWU, 1st Pumping for acceptance test, SEM mode

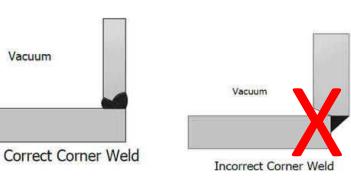
Cleaning results



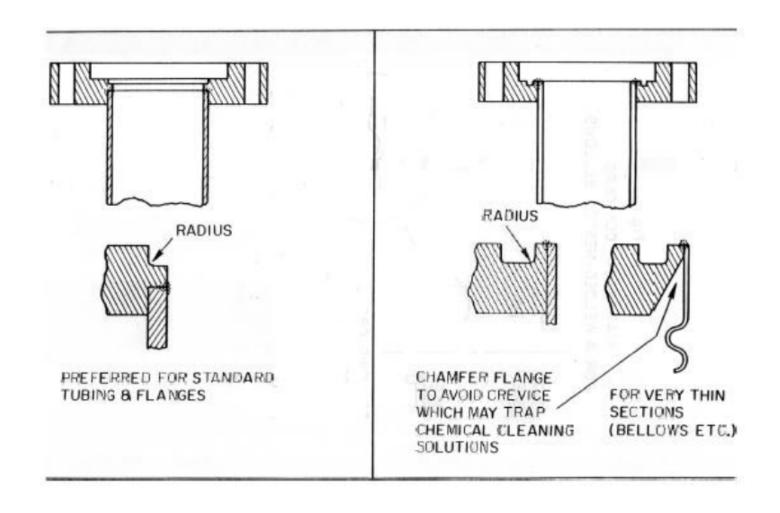

Fig: exemple of RGA before and after a bakeout at 150 °C during 16 hours


Vacuum Welding




When designing or constructing a vacuum system, the following points need to be observed:

- Full penetration welds wherever possible to avoid pockets where volumes of gas or contaminants can be trapped.
- Single pass welds wherever possible to avoid trapped volumes that could be generated with multi-pass welds.
- Welds shall always be made on the vacuum side of the joint.
- If for structural reasons double welds are required, an easy path to flow gas from the joint shall be available. This could be in the form of a machined hole between the two welds or a discontinuous weld on the non-vacuum side.



Vacuum Welding

Preferred joint design for welding vacuum flanges.

Vacuum Welding

Welding area clean for vacuum weld.

Assembling area close to welding station.

Assembling already clean for UHV before welding!!!

Materials for vacuum

Materials used for vacuum systems and components of the accelerator and other systems exposed to vacuum and operating at <10⁻⁵ Pa (<10⁻⁷ mbar) shall be selected from the approved list of materials for UHV applications UNLESS specific approval.

It is important to ensure that the correct fabrication techniques (e.g. only the use of water-soluble machining lubricants for manufacture,) handling and cleaning procedures are used so as not to compromise the vacuum performance of the selected material.

ESS test all materials to be used at the vacuum system on a specific Outgassing Facility.

Approved UHV Materials List:

- Stainless Steel type 304 & 316 series
- Copper OFHC
- Aluminium and its alloys. Do not use cast components.
- Gold
- Silver
- Titanium
- Molybdenum
- Platinum
- Beryllium Copper
- Ceramic (as Al2O3) >90%
- Machinable glass (Macor)

Prohibited Materials List:

- Brass
- Soft Solder
- Standard Hard Solder
- Electrical Solder
- All Plastics
- All Glues
- Greases
- Silicon or Sulphur based machining lubricants
- Any material containing: Zinc, Cadmium, Phosphorus, Sodium, Selenium,

Potassium or Magnesium

Material Outgassing test

EPDM Nichias

Date:
30/11/17
Ref. number
ESS-0194750

OUTGASSING TEST of EPDM sheet from Nichias

Material: EPDM	Provider: Nichias
----------------	-------------------

Dimension [cm]: DN100 Surface: 44 cm²

SAMPLE DESCRIPTION

TEST FACILITY AND EQUIPMENT

ESS outgassing test facility (See ANNEX 3).
Test carried out according to Throughput Method of [REF 3].

Gauges: IONIVAC IE514 N₂ calibrated according to [REF 1].

PRE-TEST TREATMENTS

Cleaning: None, used as received Bake-out: NO
BLANK TEST

22.1111

Chamber Gas-Load: 5x10⁻⁸ mbar l/s RGA scan: No anomalies (see ANNEX 4)

PREPUMPING IN THE LOADLOCK CHAMBER

Time to reach <10⁻⁶ mbar: 50 min Total time in the loadlock : 50 min

TEST PERFORMED AT: room temperature

OUTGASSING DATA WITH BACKGROUND SUBTRACTED [mbar l/s/cm²]

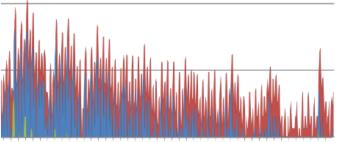
OGR @1hour: 4x10⁻⁷ OGR @10hours: 1x10⁻⁷ OGR @ 100hours: 2x10⁻⁸

REFERENCES

REF 1. ISO 3567:2011(E) - Vacuum gauges, Calibration by direct comparison

with a reference gauge.

REF 2. J. Vac. Sci. Technol. A 25(1) Jan/Feb 2007 - Recommended practice for process sampling for for partial pressure analysis.

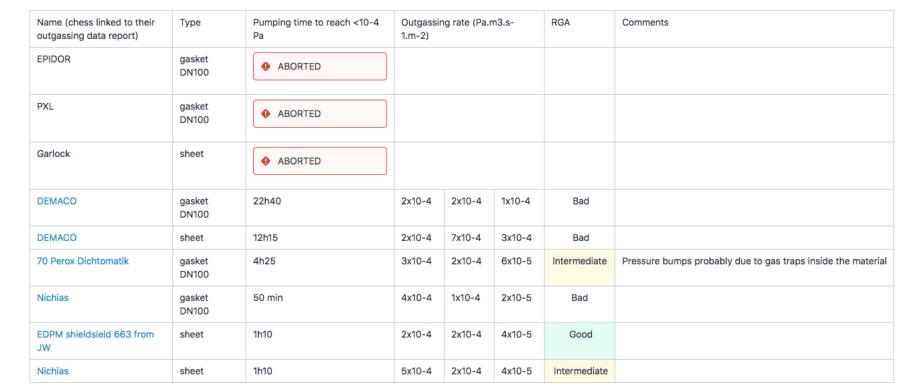

REF 3. AVS recommended practice - Recommended practices for measuring and report

outgassing data.

Test executor: K. Barthelemy | Checker: S.M. Scolari | Approver: M. J. Ferreira

'DM gasket Nichias

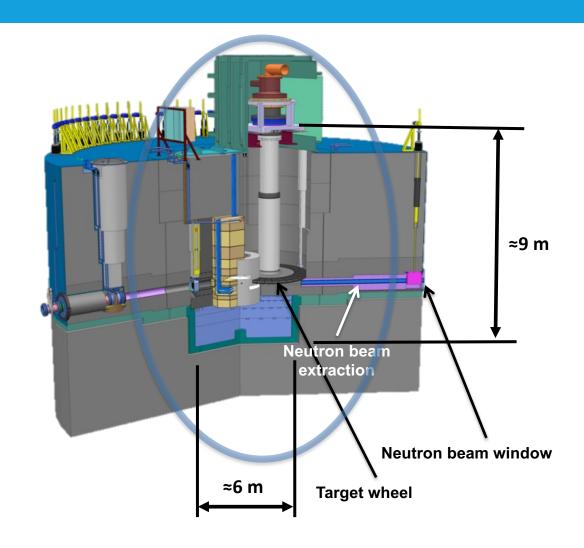
= 100h = 10h = 1h



Material Database for Vacuum

EPDM

Created by Kristell Barthelemy, last modified by Marcelo Juni Ferreira on Mar 19, 2019


Guideline for Vacuum

What is the Vacuum Guideline?

What is necessary for a vacuum project?

- Clear specifications of the vacuum necessary (lifetime, maintenance, corrosion, cost & scheduling)
- Specifications can influence vacuum design or performance (gas sources, thermal/mechanical requirements, cooling, pressure, etc),
- Materials, design and fabrications processes can influence vacuum performance!!!
- Vacuum never forgive!!!!

